Combination Network Coding

May 14 2010, at CUHK $\,$

Zongpeng Li Department of Computer Science University of Calgary

Supported by: Natural Science and Engineering Research Council of Canada (NSERC) Alberta Innovates — Technology Futures (AI-TF)

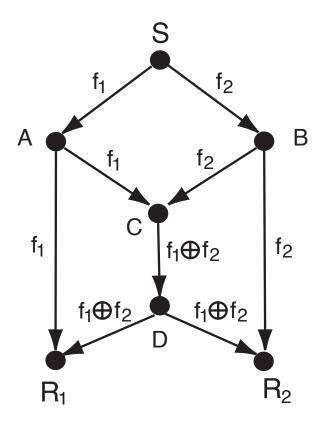
The Mathematics of Information Technology and Complex Systems (MITACS)

Network Coding

- Coding in a Network
- Information flows 'mixed' at intermediate nodes

Multicast Network Coding: An Example

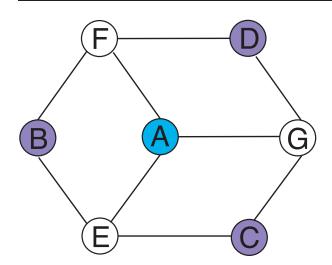
The classic butterfly network



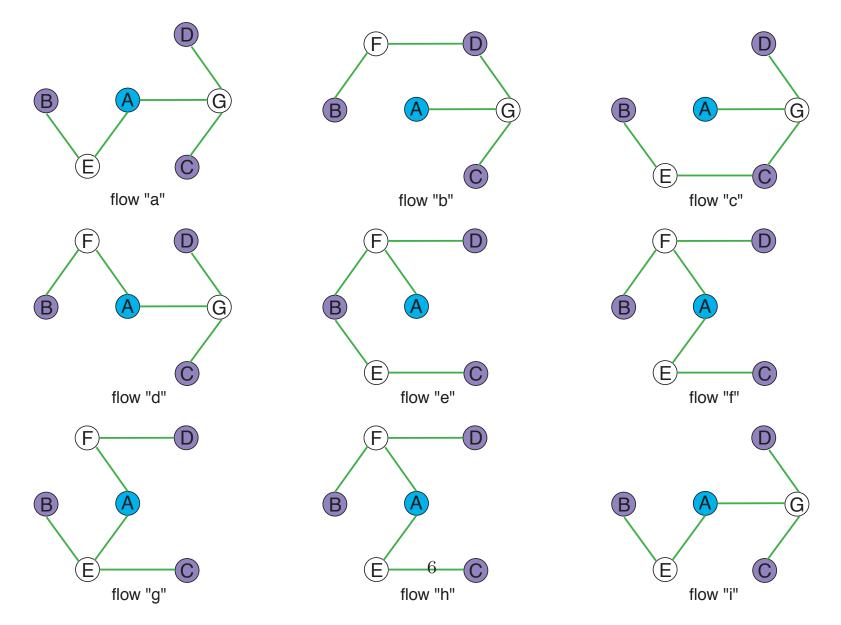
- Throughput with NC: 2
- Without NC (tree packing): < 2

Network Coding Benefits

- Increasing throughput and network capacity
- Reducing routing cost
- Reducing energy consumption (wireless)
- Security
- Robustness, network error correction
- Data scheduling in P2P networks
- Reducing complexity of optimal routing problems

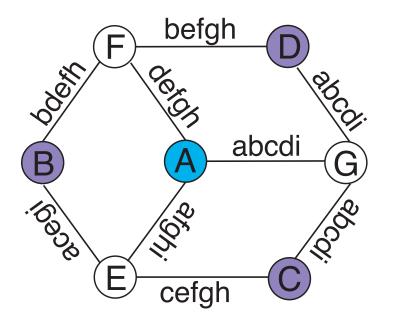


Multicast without NC: multicast tree packing



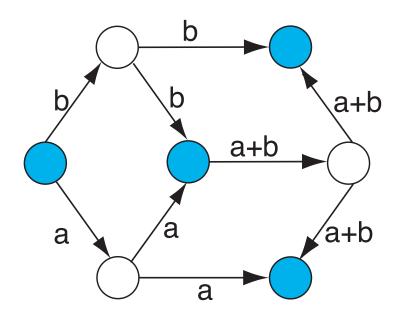
Multicast without NC: multicast tree packing

• Throughput: $0.2 \times 9 = 1.8$

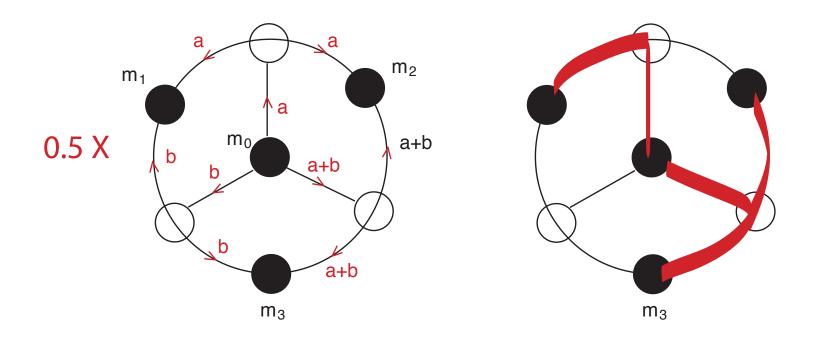


Multicast with NC: a union of network flows

- Throughput: 2
- Coding advantage: 2/1.8 = 10/9

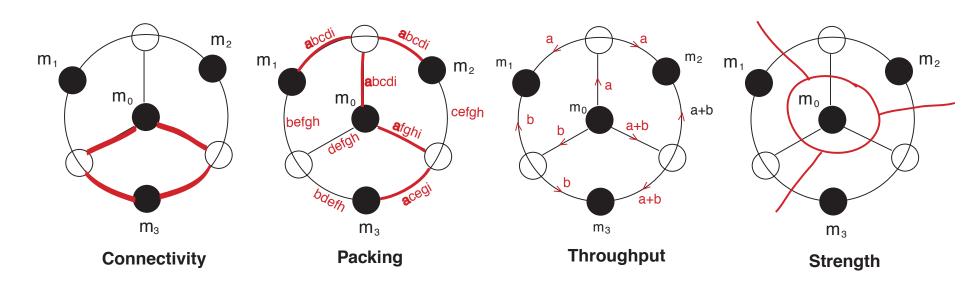


Network Coding: Reduce Multicast Cost



- Cost with NC: $0.5 \times 9 = 4.5$
- Without NC (min multicast tree): 5
- Cost advantage: 5/4.5 = 10/9

A Bound of 2 for General Undirected Networks



Previous result:

- $\frac{1}{2}$ connectivity \leq packing \leq throughput \leq strength \leq connectivity
- coding adv. = throughput/packing ≤ 2

The coding advantage:

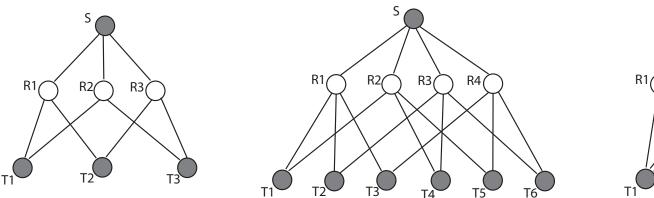
- Proved in theory: ≤ 2
- Largest value seen for networks of unbounded sizes: $\frac{8}{7}$
- Largest value seen for small contrived networks: 9/8
- In hundreds of random networks: always 1

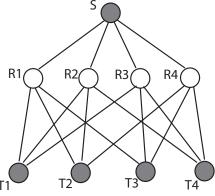
Prove a better upper-bound close to 1?

- General network coding: hard, open question
- One may first focus on special cases
 - "combination network coding"
 - "planar network coding"

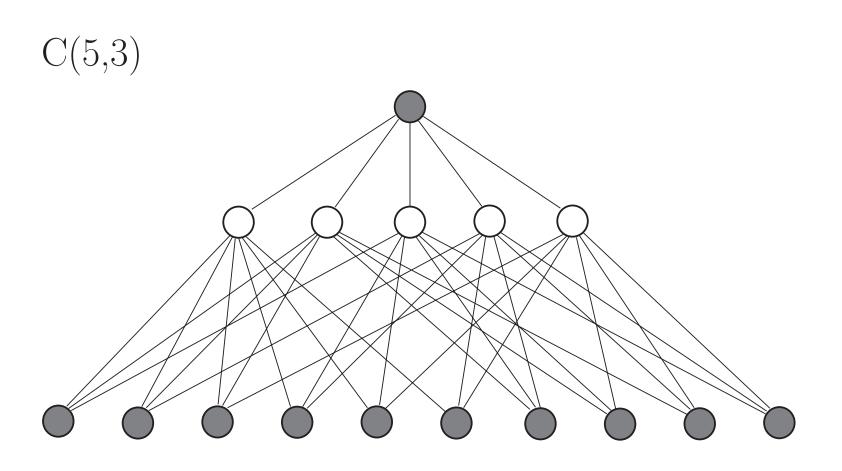
. . .

- C(n,k): 3-layer topology
- Layer 1: 1 sender
- Layer 2: n relays, each connect to sender
- Layer 3: $\binom{n}{k}$ receivers, each connect to a diff. set of k relays





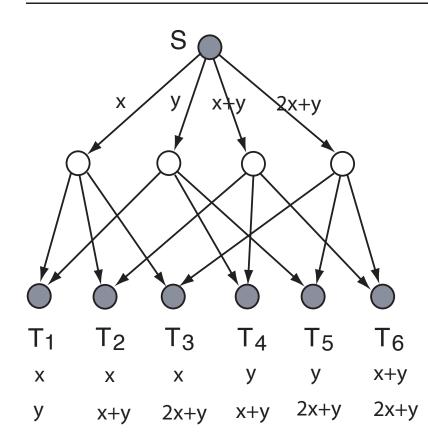
The combination network C(n,k)



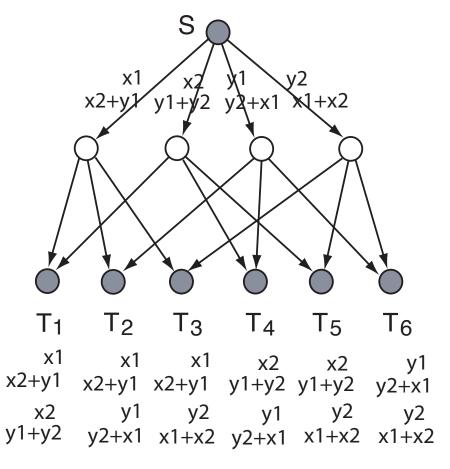
Combination Network Coding (CNC)

- CNC: network coding where information flows propagate along a C(n, k) topology
- CNC can be applied to combination networks and general networks
- Among the first network coding schemes studied
- An important class of network coding scheme, relatively well-understood

Combination Network Coding (CNC)



algebraic coding



block coding

Network	V	M	E	$\chi(N)$	$\pi(N)$	$\frac{\chi(N)}{\pi(N)}$	# of trees
butterfly	7	3	9	2	1.875	1.067	17
C(3,2)	7	4	9	2	1.8	1.111	26
C(4,3)	9	5	16	3	2.667	1.125	$1,\!113$
C(4,2)	11	7	16	2	1.778	1.125	$1,\!128$
C(5,4)	11	6	25	4	3.571	1.12	$75,\!524$
C(5,2)	16	11	25	2	1.786	1.12	119,104
C(5,3)	16	11	35	3	_	_	49,956,624

- A simple and classic network model
- Already known: in directed networks, coding adv is unbounded
- A sense of "fair play"
- Undirected future of the Internet?

Questions

- By how much can CNC increase throughput?
- By how much can CNC reduce multicast cost?
- Coding advantage *vs.* cost advantage, general network coding
- What's special about CNC?
- How does the coding advantage of CNC depend on *n* and *k*?
- Is the highest cost advantage of CNC realized in a uniform-cost network or a hetero-cost network?

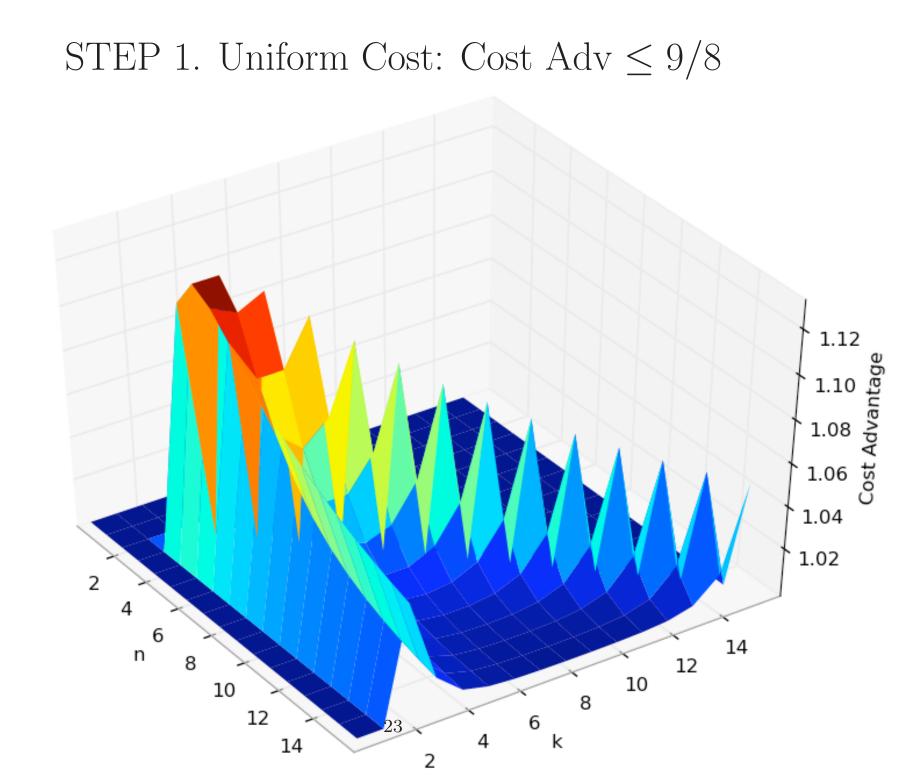
Main Result

The potential for CNC to increase multicast throughput or reduce multicast cost is tightly bounded by a factor of 9/8.

- STEP 1. The cost advantage of CNC is at most 9/8 under uniform link cost
- STEP 2. The cost advantage of CNC under heterogenous link cost cannot be higher
- STEP 3. In general, coding adv (under heterocapacity) \leq cost adv (under hetero-cost)

STEP 1. Uniform Cost: Cost Adv $\leq 9/8$

- Minimum tree cost: $\binom{n}{k} + n k + 1$
- Minimum CNC cost: $\binom{n}{k} + \frac{n}{k}$
- The cost advantage, closed-form representation: $\frac{\binom{n}{k} + n k + 1}{\binom{n}{k} + \frac{n}{k}}$
- Mathematically prove: $\frac{\binom{n}{k}+n-k+1}{\binom{n}{k}+\frac{n}{k}} \leq 9/8$
- Maximum value of 9/8 attained at C(4, 2) and C(4, 3).



STEP 2. Hetero-Cost vs Uniform-Cost

- Want to prove: $\frac{W_{tree}^{h}}{W_{NC}^{h}} \leq \frac{W_{tree}^{u}}{W_{NC}^{u}}$
- Equivalent to: $\frac{W_{tree}^h}{W_{tree}^u} \leq \frac{W_{NC}^h}{W_{NC}^u}$
- (Assume $w(e) \ge 1, \forall e$:) cost inflation of opt tree is no worse than cost inflation of network coding
- Intuition: many candidate trees, can pick best tree to avoid more costly links.
- The hard part: which is the "best tree", or a "good tree"? How to bound its cost inflation?

STEP 2. Hetero-Cost vs Uniform-Cost

- Key idea: build a set of trees, claim that one of them must be "good"!
 - even though we don't know which.
- Technique: throughput-critical packing of multicast trees

Definition: A critical packing is a tree packing scheme that exactly saturates every link of a multicast network.

Theorem: Every C(n, k) network under uniform capacity has a critical packing of minimum multicast trees.

One of the trees in the critical packing must be a 'good' tree.

• Because average cost inflation of all trees in the critical packing = cost inflation of CNC

Max-throughput multicast with network coding, LP: Maximize d^{NC}

Subject to:

$$\begin{cases} d^{NC} \leq f_i(\overrightarrow{T_iS}) & \forall T_i \in \mathcal{T} \\ f_i(\overrightarrow{uv}) \leq c(\overrightarrow{uv}) & \forall T_i \in \mathcal{T}, \forall \ \overrightarrow{uv} \neq \overrightarrow{T_iS} \\ \sum_{v \in N(u)} (f_i(\overrightarrow{uv}) - f_i(\overrightarrow{vu})) = 0 & \forall T_i \in \mathcal{T}, \forall u \\ c(\overrightarrow{uv}) + c(\overrightarrow{vu}) \leq c(uv) & \forall uv \neq T_iS \end{cases}$$

 $c(\overrightarrow{uv}), f_i(\overrightarrow{uv}), d^{NC} \ge 0 \qquad \forall T_i, \forall \ \overrightarrow{uv}$

By analyzing a Lagrange dual:

Theorem: A multicast rate d is feasible in an undirected multicast network (G, c) with network coding, if and only if for every link cost vector $w \in \mathcal{Q}_{+}^{E_{G}}$,

$$\frac{|G|_w}{\min_{d^{NC}(f)=1} |f|_w} \ge d$$

Max-throughput multicast with tree packing, LP:

Maximize $\sum_{t \in \mathcal{T}} f(t)$ Subject to: $\sum_{t \in \mathcal{T}: e \in t} f(t) \le c(e) \quad \forall e \in E_G \quad \longleftrightarrow w(e)$ $f(t) \ge 0 \quad \forall t \in \mathcal{T}$ By analyzing a Lagrange dual:

Theorem: A multicast rate d is feasible in an undirected multicast network (G, c) with tree packing, if and only if for every link cost vector $w \in \mathcal{Q}_{+}^{E_{G}}$,

$$\frac{|G|_w}{\min_{t\in\mathcal{T}} |t|_w} \ge d.$$

Furthermore, for the max-throughput d^*_{tree} , there exists a corresponding cost vector w^*_{tree} , such that equality holds.

Combining the two previous theorems:

Theorem: In any undirected multicast network topology G, for a given link capacity vector $c \in \mathcal{Q}_{+}^{E_{G}}$, there always exists a link cost vector $w \in \mathcal{Q}_{+}^{E_{G}}$, such that the cost adv of NC in (G, w) is at least as high as the coding adv of NC in (G, c).

Same topology: Coding $Adv \leq Cost Adv$

3-Step Proof Done

- We now finished the 3 steps for proving that 9/8 is an upper-bound for the coding adv and cost adv of CNC
- The bound is tight since it's achieved in known networks

Conclusion

CNC can increase multicast throughput by at most 1/8, can reduce multicast cost by at most 1/9, in undirected networks.